Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578160

RESUMO

Structural variations (SVs) are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress. In this study, we employed woolly grape (Vitis retordii), a species native to the tropical and subtropical regions of East Asia with both coastal and inland habitats, as a valuable model for examining the impact of SVs on local adaptation. We assembled a haplotype-resolved chromosomal reference genome for woolly grape, and conducted population genetic analyses based on whole-genome sequencing (WGS) data from coastal and inland populations. The demographic analyses revealed recent bottlenecks in all populations and asymmetric gene flow from the inland to the coastal population. In total, 1,035 genes associated with plant adaptive regulation for salt stress, radiation, and environmental adaptation were detected underlying local selection by SVs and SNPs in the coastal population, of which 37.29% and 65.26% were detected by SVs and SNPs, respectively. Candidate genes such as FSD2, RGA1, and AAP8 associated with salt tolerance were found to be highly differentiated and selected during the process of local adaptation to coastal habitats in SV regions. Our study highlights the importance of SVs in local adaptation; candidate genes related to salt stress and climatic adaptation to tropical and subtropical environments are important genomic resources for future breeding programs of grapevine and its rootstocks.

2.
Int Wound J ; 21(2): e14791, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361252

RESUMO

To assess the efficacy of moxibustion for diabetic foot, and compile the findings of randomised clinical trials. China National Knowledge Infrastructure Database, Medicine, WanFang Database, Embase, Chinese Scientific Journal Database and Web of Science were from the establishment to January, 2024 were searched. Randomised controlled trials, which evaluated the effects of moxibustion were included. A total of 12 randomised controlled trials involving 1196 patients were included. According to the pooled results of this meta-analysis, effective rate (relative risk 1.16, 95% confidence intervals, CI [1.11, 1.22]), healing time (mean difference [MD] -6.27, 95% CI [-8.68, -3.86]), wound area (MD 3.46, 95% CI [0.84, 6.09]), and ankle brachial index (MD 0.14, 95% CI [0.03, 0.24]) were statistically significant compared to the control group. This study suggests that moxibustion treatment has the potential for improving symptoms of diabetic foot. However, future in-depth research on the benefits and harms of moxibustion for the diabetic foot is needed before it can be accepted as an evidence-based treatment.


Assuntos
Diabetes Mellitus , Pé Diabético , Moxibustão , Humanos , Moxibustão/métodos , Pé Diabético/terapia , China , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Plant Physiol ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285049

RESUMO

Plant domestication shapes gene contents between the cultivars and their wild progenitors. Previously, short-reads and small variants (SNPs, indels and microsatellites) were mostly used to study grapevine (Vitis vinifera) domestication processes. Due to the lack of population-level assemblies for both the crop and its wild progenitors, capturing gene gain and loss caused by large structural variants remains a challenge. Here, we applied comparative genomic analyses to discover gene gain and loss during grapevine domestication using long-read assemblies of representative population samples for both domesticated grapevines (V. vinifera ssp. vinifera) and their wild progenitors (V. vinifera ssp. sylvestris). Only ∼7% of gene families were shared by 16 Vitis genomes while ∼8% of gene families were specific to each accession, suggesting dramatic variations of gene contents in grapevine genomes. Compared to wild progenitors, the domesticated accessions possessed more genes involved in asexual reproduction, while the wild progenitors harbored more genes related to pollination, revealing the transition from sexual reproduction to clonal propagation during domestication processes. Moreover, the domesticated accessions harbored fewer disease-resistance genes than wild progenitors. The structural variants occurred frequently in aroma and disease-resistance related genes between domesticated grapevines and wild progenitors, indicating the rapid diversification of these genes during domestication. Our study provides insights and resources for biological studies and breeding programs in grapevine.

4.
Biochem Biophys Res Commun ; 694: 149403, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38147699

RESUMO

Mounting studies have showed that tumor microenvironment (TME) is crucial for cervical cancer (CC), and cancer-related fibroblasts (CAFs) play a major role in it. Recently, exosomal miRNAs secreted by CAFs have been found to be potential targets for cancer diagnosis and therapy. In this paper, we aimed to investigate the function of CAFs-mediated exosome miR-18a-5p (CAFs-exo-miR-18a-5p) in CC. First, in combination with bioinformatic data analysis of the GEO database (GSE86100) and RT-qPCR of CC clinical tissue samples and cell lines, miR-18a-5p was discovered to be markedly up-regulated in CC. Next, CAFs-secreted exosomes were isolated and it was found that miR-18a-5p expression was dramatically promoted in CC cell lines when treated with CAFs-exos. The CAFs-exo-miR-18a-5p was then elucidated to stimulate the proliferation and migration and inhibit the apoptosis of CC cells. In order to clarify the underlying mechanism, we further screened the target genes of miR-18a-5p. TMEM170B was selected by bioinformatic data analysis of online databases combined with RT-qPCR of CC clinical tissues and cells. Luciferase reporter gene analysis combined with molecular biology experiments further elucidated that miR-18a-5p suppressed TMEM170B expression in CC. Finally, both cell and animal experiments demonstrated that TMEM170B over-expression attenuated the oncogenic effect of CAFs-exo-miR-18a-5p. In conclusion, our study indicates that CAFs-mediated exosome miR-18a-5p promotes the initiation and development of CC by suppressing TMEM170B signaling axis, which provides a possible direction for the diagnosis and therapy of CC.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , MicroRNAs , Neoplasias do Colo do Útero , Humanos , Animais , Feminino , Exossomos/genética , Exossomos/metabolismo , Neoplasias do Colo do Útero/patologia , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
5.
Neuropharmacology ; 245: 109814, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104768

RESUMO

Current evidence suggests that hyperactivated or impaired autophagy can lead to neuronal death. The effect of local anesthetics on painful diabetic neuropathy (PDN) and the role of autophagy in the above pathological process remain unclear, warranting further studies. So, PDN models were established by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in leptin gene-mutation (db/db) mice. Wild type (WT) and PDN mice received intrathecal 0.75% bupivacaine or/with intraperitoneal drug treatment (rapamycin or bafilomycin A1). Subsequently, the PWT and PWL were measured to assess hyperalgesia at 6 h, 24 h, 30 h, and 48 h after intrathecal bupivacaine. Also, sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) were measured before and 48 h after intrathecal bupivacaine treatment. The spinal cord tissue of L4-L6 segments and serum were harvested to evaluate the change of autophagy, oxidative stress, oxidative injury, and apoptosis. We found that bupivacaine induced the activation of autophagy but did not affect the pain threshold, SNCV and MNCV in WT mice at predefined time points. Conversely, bupivacaine lowered autophagosome generation and degradation, slowed SNCV and aggravated spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. The autophagy activator (rapamycin) could decrease spinal dorsal horn neuron oxidative injury, alleviate the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Meanwhile, the autophagy inhibitor (bafilomycin A1) could exacerbate spinal dorsal horn neuron oxidative injury, the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Our results showed that bupivacaine could induce defective autophagy, slowed SNCV and aggravate spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. Restoring autophagy may represent a potential therapeutic approach against nerve injury in PDN patients with local anesthesia and analgesia.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Macrolídeos , Ratos , Camundongos , Humanos , Animais , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Bupivacaína/toxicidade , Sirolimo , Autofagia
6.
Med Gas Res ; 14(1): 1-5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37721248

RESUMO

Sevoflurane has become an important volatile anesthetic in clinic and has been widely studied in recent years. Numerous studies have demonstrated the efficacy of sevoflurane in safeguarding against brain damage across various domains. For example, it has played a neuroprotective role in subarachnoid hemorrhage (SAH), traumatic brain injury, and ischemia/reperfusion injury. The ensuing critique will focus on the significance of sevoflurane in experimental SAH and shed light on the underlying mechanisms. The findings of the current investigation demonstrate that sevoflurane possesses neuroprotective capabilities and clarify that it effectively attenuates secondary damage resulting from SAH through anti-inflammatory and anti-apoptotic pathways. More specifically, sevoflurane is observed to mitigate arterial vasospasm, diminish microvascular thrombosis, and alleviate cerebral edema. In light of these discoveries, we maintain that sevoflurane exhibits significant promise in the management of SAH, and it merits additional investigation to facilitate its prompt clinical implementation. Therefore, a thorough understanding of the neuroprotective properties of sevoflurane is beneficial to exploring novel therapeutic solutions for SAH and providing clinicians with alternative treatment modalities.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Humanos , Sevoflurano/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Apoptose , Lesões Encefálicas/tratamento farmacológico , Anti-Inflamatórios/farmacologia
7.
Hortic Res ; 10(11): uhad205, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38046853

RESUMO

Teinturier grapes are characterized by the typical accumulation of anthocyanins in grape skin, flesh, and vegetative tissues, endowing them with high utility value in red wine blending and nutrient-enriched foods developing. However, due to the lack of genome information, the mechanism involved in regulating teinturier grape coloring has not yet been elucidated and their genetic utilization research is still insufficient. Here, the cultivar 'Yan73' was used for assembling the telomere-to-telomere (T2T) genome of teinturier grapes by combining the High Fidelity (HiFi), Hi-C and ultralong Oxford Nanopore Technologies (ONT) reads. Two haplotype genomes were assembled, at the sizes of 501.68 Mb and 493.38 Mb, respectively. In the haplotype 1 genome, the transposable elements (TEs) contained 32.77% of long terminal repeats (LTRs), while in the haplotype 2 genome, 31.53% of LTRs were detected in TEs. Furthermore, obvious inversions were identified in chromosome 18 between the two haplotypes. Transcriptome profiling suggested that the gene expression patterns in 'Cabernet Sauvignon' and 'Yan73' were diverse depending on tissues, developmental stages, and varieties. The transcription program of genes in the anthocyanins biosynthesis pathway between the two cultivars exhibited high similarity in different tissues and developmental stages, whereas the expression levels of numerous genes showed significant differences. Compared with other genes, the expression levels of VvMYBA1 and VvUFGT4 in all samples, VvCHS2 except in young shoots and VvPAL9 except in the E-L23 stage of 'Yan73' were higher than those of 'Cabernet Sauvignon'. Further sequence alignments revealed potential variant gene loci and structure variations of anthocyanins biosynthesis related genes and a 816 bp sequence insertion was found in the promoter of VvMYBA1 of 'Yan73' haplotype 2 genome. The 'Yan73' T2T genome assembly and comparative analysis provided valuable foundations for further revealing the coloring mechanism of teinturier grapes and the genetic improvement of grape coloring traits.

9.
Proc Natl Acad Sci U S A ; 120(24): e2222041120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276420

RESUMO

Domesticated grapevines spread to Europe around 3,000 years ago. Previous studies have revealed genomic signals of introgression from wild to cultivated grapes in Europe, but the time, mode, genomic pattern, and biological effects of these introgression events have not been investigated. Here, we studied resequencing data from 345 samples spanning the distributional range of wild (Vitis vinifera ssp. sylvestris) and cultivated (V. vinifera ssp. vinifera) grapes. Based on machine learning-based population genetic analyses, we detected evidence for a single domestication of grapevine, followed by continuous gene flow between European wild grapes (EU) and cultivated grapes over the past ~2,000 y, especially from EU to wine grapes. We also inferred that soft-selective sweeps were the dominant signals of artificial selection. Gene pathways associated with the synthesis of aromatic compounds were enriched in regions that were both selected and introgressed, suggesting EU wild grapes were an important resource for improving the flavor of cultivated grapes. Despite the potential benefits of introgression in grape improvement, the introgressed fragments introduced a higher deleterious burden, with most deleterious SNPs and structural variants hidden in a heterozygous state. Cultivated wine grapes have benefited from adaptive introgression with wild grapes, but introgression has also increased the genetic load. In general, our study of beneficial and harmful effects of introgression is critical for genomic breeding of grapevine to take advantage of wild resources.


Assuntos
Domesticação , Vitis , Europa (Continente) , Genômica , Análise de Sequência de DNA , Vitis/genética
10.
PLoS Genet ; 19(6): e1010811, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339133

RESUMO

Conservation of crop wild relatives is critical for plant breeding and food security. The lack of clarity on the genetic factors that lead to endangered status or extinction create difficulties when attempting to develop concrete recommendations for conserving a citrus wild relative: the wild relatives of crops. Here, we evaluate the conservation of wild kumquat (Fortunella hindsii) using genomic, geographical, environmental, and phenotypic data, and forward simulations. Genome resequencing data from 73 accessions from the Fortunella genus were combined to investigate population structure, demography, inbreeding, introgression, and genetic load. Population structure was correlated with reproductive type (i.e., sexual and apomictic) and with a significant differentiation within the sexually reproducing population. The effective population size for one of the sexually reproducing subpopulations has recently declined to ~1,000, resulting in high levels of inbreeding. In particular, we found that 58% of the ecological niche overlapped between wild and cultivated populations and that there was extensive introgression into wild samples from cultivated populations. Interestingly, the introgression pattern and accumulation of genetic load may be influenced by the type of reproduction. In wild apomictic samples, the introgressed regions were primarily heterozygous, and genome-wide deleterious variants were hidden in the heterozygous state. In contrast, wild sexually reproducing samples carried a higher recessive deleterious burden. Furthermore, we also found that sexually reproducing samples were self-incompatible, which prevented the reduction of genetic diversity by selfing. Our population genomic analyses provide specific recommendations for distinct reproductive types and monitoring during conservation. This study highlights the genomic landscape of a wild relative of citrus and provides recommendations for the conservation of crop wild relatives.


Assuntos
Citrus , Citrus/genética , Melhoramento Vegetal , Genoma , Genômica , Produtos Agrícolas/genética , Variação Genética
11.
Hortic Res ; 10(5): uhad061, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37213686

RESUMO

Grapevine is one of the most economically important crops worldwide. However, the previous versions of the grapevine reference genome tipically consist of thousands of fragments with missing centromeres and telomeres, limiting the accessibility of the repetitive sequences, the centromeric and telomeric regions, and the study of inheritance of important agronomic traits in these regions. Here, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the cultivar PN40024 using PacBio HiFi long reads. The T2T reference genome (PN_T2T) is 69 Mb longer with 9018 more genes identified than the 12X.v0 version. We annotated 67% repetitive sequences, 19 centromeres and 36 telomeres, and incorporated gene annotations of previous versions into the PN_T2T assembly. We detected a total of 377 gene clusters, which showed associations with complex traits, such as aroma and disease resistance. Even though PN40024 derives from nine generations of selfing, we still found nine genomic hotspots of heterozygous sites associated with biological processes, such as the oxidation-reduction process and protein phosphorylation. The fully annotated complete reference genome therefore constitutes an important resource for grapevine genetic studies and breeding programs.

12.
Front Plant Sci ; 14: 1102695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844076

RESUMO

Introduction: Grape rootstocks play critical role in the development of the grape industry over the globe for their higher adaptability to various environments, and the evaluation of their genetic diversity among grape genotypes is necessary to the conservation and utility of genotypes. Methods: To analyze the genetic diversity of grape rootstocks for a better understanding multiple resistance traits, whole-genome re-sequencing of 77 common grape rootstock germplasms was conducted in the present study. Results: About 645 billion genome sequencing data were generated from the 77 grape rootstocks at an average depth of ~15.5×, based on which the phylogenic clusters were generated and the domestication of grapevine rootstocks was explored. The results indicated that the 77 rootstocks originated from five ancestral components. Through phylogenetic, principal components, and identity-by-descent (IBD) analyses, these 77 grape rootstocks were assembled into ten groups. It is noticed that the wild resources of V. amurensis and V. davidii, originating from China and being generally considered to have stronger resistance against biotic and abiotic stresses, were sub-divided from the other populations. Further analysis indicated that a high level of linkage disequilibrium was found among the 77 rootstock genotypes, and a total of 2,805,889 single nucleotide polymorphisms (SNPs) were excavated, GWAS analysis among the grape rootstocks located 631, 13, 9, 2, 810, and 44 SNP loci that were responsible to resistances to phylloxera, root-knot nematodes, salt, drought, cold and waterlogging traits. Discussion: This study generated a significant amount of genomic data from grape rootstocks, thus providing a theoretical basis for further research on the resistance mechanism of grape rootstocks and the breeding of resistant varieties. These findings also reveal that China originated V. amurensis and V. davidii could broaden the genetic background of grapevine rootstocks and be important germplasm used in breeding high stress-resistant grapevine rootstocks.

13.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361715

RESUMO

Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis (Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphingolipids play a key role in primary root growth through the maintenance of the root SCN and the amelioration of cell death in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fumonisinas , Animais , Arabidopsis/metabolismo , Esfingolipídeos/metabolismo , Fumonisinas/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mamíferos/metabolismo
14.
Natl Sci Rev ; 9(10): nwac114, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36415319

RESUMO

Apomixis, or asexual seed formation, is prevalent in Citrinae via a mechanism termed nucellar or adventitious embryony. Here, multiple embryos of a maternal genotype form directly from nucellar cells in the ovule and can outcompete the developing zygotic embryo as they utilize the sexually derived endosperm for growth. Whilst nucellar embryony enables the propagation of clonal plants of maternal genetic constitution, it is also a barrier to effective breeding through hybridization. To address the genetics and evolution of apomixis in Citrinae, a chromosome-level genome of the Hongkong kumquat (Fortunella hindsii) was assembled following a genome-wide variation map including structural variants (SVs) based on 234 Citrinae accessions. This map revealed that hybrid citrus cultivars shelter genome-wide deleterious mutations and SVs into heterozygous states free from recessive selection, which may explain the capability of nucellar embryony in most cultivars during Citrinae diversification. Analyses revealed that parallel evolution may explain the repeated origin of apomixis in different genera of Citrinae. Within Fortunella, we found that apomixis of some varieties originated via introgression. In apomictic Fortunella, the locus associated with apomixis contains the FhRWP gene, encoding an RWP-RK domain-containing protein previously shown to be required for nucellar embryogenesis in Citrus. We found the heterozygous SV in the FhRWP and CitRWP promoters from apomictic Citrus and Fortunella, due to either two or three miniature inverted transposon element (MITE) insertions. A transcription factor, FhARID, encoding an AT-rich interaction domain-containing protein binds to the MITEs in the promoter of apomictic varieties, which facilitates induction of nucellar embryogenesis. This study provides evolutionary genomic and molecular insights into apomixis in Citrinae and has potential ramifications for citrus breeding.

15.
PeerJ ; 10: e14034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168431

RESUMO

Background: The HAK family is the largest potassium (K+) transporter family, vital in K+ uptake, plant growth, and both plant biotic and abiotic stress responses. Although HAK family members have been characterized and functionally investigated in many species, these genes are still not studied in detail in Medicago truncatula, a good model system for studying legume genetics. Methods: In this study, we screened the M. truncatula HAK family members (MtHAKs). Furthermore, we also conducted the identification, phylogenetic analysis, and prediction of conserved motifs of MtHAKs. Moreover, we studied the expression levels of MtHAKs under K+ deficiency, drought, and salt stresses using quantitative real-time PCR (qRT-PCR). Results: We identified 20 MtHAK family members and classified them into three clusters based on phylogenetic relationships. Conserved motif analyses showed that all MtHAK proteins besides MtHAK10 contained the highly conserved K+ transport domain (GVVYGDLGTSPLY). qRT-PCR analysis showed that several MtHAK genes in roots were induced by abiotic stress. In particular, MtHAK15, MtHAK17, and MtHAK18 were strongly up-regulated in the M. truncatula roots under K+ deficiency, drought, and salt stress conditions, thereby implying that these genes are good candidates for high-affinity K+ uptake and therefore have essential roles in drought and salt tolerance. Discussions: Our results not only provided the first genetic description and evolutionary relationships of the K+ transporter family in M. truncatula, but also the potential information responding to K+ deficiency and abiotic stresses, thereby laying the foundation for molecular breeding of stress-resistant legume crops in the future.


Assuntos
Medicago truncatula , Deficiência de Potássio , Medicago truncatula/genética , Deficiência de Potássio/genética , Filogenia , Família Multigênica , Estresse Fisiológico/genética
16.
Chem Biol Interact ; 366: 110135, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049518

RESUMO

Kaempferol is a major flavonoid found in natural plant extracts; it shows great potential in anti-inflammatory and anti-cancer medicine. However, the underlying mechanism of the protective action of kaempferol on the gut-vascular barrier (GVB) and the active sites preventing intestinal micro-angiogenesis has not been reported. The purpose of our study is to investigate the protective effect of kaempferol on the barrier damage induced by lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-α), and its mechanism of protective action on intestinal micro-angiogenesis. Our data showed that the combination of LPS and TNF-α activates the inflammatory response of the rat intestinal microvascular endothelial cells (RIMVECs), leading to overexpression of vascular endothelial growth factors (VEGFs). Also, the permeability of GVB and transepithelial electrical resistance (TEER) constructed by Transwell and the tubular structure of RIMVEC were significantly affected. Kaempferol (25, 50, and 100 µM) decreased the inflammatory factor secretion and GVB permeability, down-regulated the expression of VEGFs, p-Akt, and hypoxia-inducible factor-1alpha (HIF-1α). It also alleviated the abnormal expression of tight junction proteins (TJs). Moreover, kaempferol may prevents intestinal angiogenesis in the presence of Akt inhibitor (MK-2206 2HCl) by regulating tube formation and downstream signaling of the VEGF/Akt pathways. In addition, the wound healing test showed that kaempferol had a similar effect in the presence of p38 inhibitor (SB203580), which intuitively restrained the migration of RIMVECs and reduced the p38 MAPK signaling. Our results demonstrated that kaempferol exhibits significant anti-inflammatory effects in LPS and TNF-α induced inflammatory environments. Kaempferol prevents intestinal angiogenesis by impeding the tube formation and migration of RIMVECs. It also suppresses the expression of angiogenesis-related signals, thereby protecting the GVB.


Assuntos
Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Animais , Anti-Inflamatórios/farmacologia , Células Endoteliais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Quempferóis/farmacologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Proteínas de Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Hortic Res ; 9: uhac103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795384

RESUMO

Grafting, which joins a scion from a cultivar with the stem of a rootstock from a grapevine wild relative, is commonly used in viticulture. Grafting has crucial effects on various phenotypes of the cultivar, including its phenology, biotic and abiotic resistance, berry metabolome, and coloration, but the underlying genetics and regulatory mechanisms are largely unexplored. In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at three developmental stages (45, 75, and 105 days after flowering) of the Crimson Seedless cultivar (Vitis vinifera) grafted onto four rootstocks (three heterografts, CS/101-14, CS/SO4, and CS/110R and one self-graft, CS/CS) with own-rooted graft-free Crimson Seedless (CS) as the control. All the heterografts had a significant effect on berry reddening as early as ~45 days after flowering. The grafting of rootstocks promoted anthocyanin biosynthesis and accumulation in grape berries. The metabolomic features showed that cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, malvidin 3-O-glucoside, peonidin 3-O-glucoside, and petunidin 3-O-glucoside were the pigments responsible for the purplish-red peel color. Transcriptomic analyses revealed that anthocyanin biosynthesis-related genes, from upstream (phenylalanine ammonia-lyase) to downstream (anthocyanidin 3-O-glucosyltransferase and anthocyanidin synthase), were upregulated with the accumulation of anthocyanins in the heterografted plants. At the same time, all these genes were also highly expressed and more anthocyanin was accumulated in self-grafted CS/CS samples compared with own-rooted graft-free CS samples, suggesting that self-grafting may also have promoted berry reddening in grapevine. Our results reveal global transcriptomic and metabolomic features in berry color regulation under different grafting conditions that may be useful for improving berry quality in viticulture.

18.
Plants (Basel) ; 11(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35567166

RESUMO

Grapes are subject to a wide range of climatic conditions during their life cycle, but the use of rootstocks can effectively ameliorate the effects of abiotic stress. However, the tolerance mechanism of different grape rootstock varieties varies under various stresses, and systematic research on this aspect is limited. On the basis of previous research, transcriptome sequencing was performed on three tolerant grape rootstock varieties (3309C, 520A, 1103P) and three intolerant grape rootstock varieties (5BB, 101-14, Beta). In total, 56,478,468 clean reads were obtained. One hundred and ten genes only existed in all combinations during P1 with a downregulated trend, and 178 genes existed only in P1 of tolerant grape rootstock varieties. Salt treatment firstly affected the photosynthesis of leaves, and tolerant varieties weakened or even eliminated this effect through their own mechanisms in the later stage. Tolerant varieties mobilized a large number of MFs during the P2 stage, such as hydrolase activity, carboxypeptidase activity, and dioxygenase activity. Carbon metabolism was significantly enriched in P1, while circadian rhythm and flavonoid biosynthesis were only enriched in tolerant varieties. In the intolerant varieties, photosynthesis-related pathways were always the most significantly enriched. There were large differences in the gene expression of the main signal pathways related to salt stress in different varieties. Salt stress affected the expression of genes related to plant abiotic stress, biotic stress, transcription factors, hormones, and secondary metabolism. Tolerant varieties mobilized more bHLH, WRKY, and MYB transcription factors to respond to salt stress than intolerant varieties. In the tolerant rootstocks, SOS was co-expressed. Among these, SOS1 and SOS2 were upregulated, and the SOS3 and SOS5 components were downregulated. The genes of heat shock proteins and the phenylalanine pathway were upregulated in the tolerant varieties. These findings outline a tolerance mechanism model for rootstocks for coping with osmotic stress, providing important information for improving the resistance of grapes under global climate change.

19.
Phys Rev Lett ; 128(19): 195001, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622043

RESUMO

The new hohlraum experimental platform and the quasi-3D simulation model are developed to enable the study of the indirect drive experiment using the six-cylinder-port hohlraum for the first time. It is also the first implosion experiment for the six laser-entrance-hole hohlraum to effectively use all the laser beams of the laser facility that is primarily designed for the cylindrical hohlraum. The experiments performed at the 100 kJ Laser Facility produce a peak hohlraum radiation temperature of ∼222 eV for ∼80 kJ and 2 ns square laser pulse. The inferred x-ray conversion efficiency η∼87% is similar to the cylindrical hohlraum and higher than the octahedral spherical hohlraum at the same laser facility, while the low laser backscatter is similar to the outer cone of the cylindrical hohlraum. The hohlraum radiation temperature and M-band (>1.6 keV) flux can be well reproduced by the quasi-3D simulation. The variations of the yield-over-clean and the hot spot shape can also be semiquantitatively explained by the calculated major radiation asymmetry of the quasi-3D simulation. Our work demonstrates the capability for the study of the indirect drive with the six-cylinder-port hohlraum at the cylindrically configured laser facility, which is essential for numerically assessing the laser energy required by the ignition-scale six-cylinder-port hohlraum.

20.
Arch Biochem Biophys ; 720: 109173, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35300940

RESUMO

The effect of Esculetin on pyroptosis and its possible mechanism in endothelium were explored. 10 µg/mL LPS and 0.5 mM ATP were used to stimulate the rat intestinal microvascular endothelial cells. Then add different concentrations of Esculetin (20µM, 40 µM) to the culture medium containing LPS and ATP culturing for 24 h. The expression of p-NF-κB p65, NF-κB p65, I-κB, p-I-κB, NLRP3, ASC, caspase-1, and gasdermin-D were detected by Western blot, and the release level of IL-18 and IL-1ß were measured by ELISA. The NLRP3 inhibitor MCC950 was used at the concentration of 10 µM for 4 h to disentangle the potential mechanism of the influence of Esculetin on pyroptosis. In our experiments, the expression of gasdermin-d and important proteins of NF-κB and NLRP3 signaling pathways were inhibited by Esculetin. Besides, Esculetin also attenuated the morphological changes like swelling rupture and pores on the membrane caused by pyroptosis thereby protecting cells from being damaged by pyroptosis. Combining with the effect of Esculetin on proteins above and its protective effect on cell morphology, we believe that Esculetin has an anti-pyroptosis effect. The inhibiting pyroptosis effects mentioned above are similar to MCC950, which means the anti-pyroptosis effects of Esculetin are associated with the NLRP3 signaling pathway. In conclusion, Esculetin inhibits the pyroptosis of microvascular endothelial cells through the NF-κB/NLFP3 signaling pathway and is expected to be conducive in treating pyroptosis-related diseases.


Assuntos
Células Endoteliais , Microvasos , NF-kappa B , Piroptose , Umbeliferonas , Trifosfato de Adenosina , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , Microvasos/citologia , Microvasos/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Ratos , Transdução de Sinais , Umbeliferonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...